

Corrosion Control of Storage Tanks Liabilities to Assets

Presented by:

Rafael E. Rodriguez Project Manager Corrpro Companies, Inc. Houston, Texas

Corrosion Control of Storage Tanks Liabilities to Assets

Cost of Corrosion
Definition of Corrosion
Common Causes of Corrosion
Corrosion Control

The Costs of Corrosion

According to a Study Conducted by The U.S. Department of Transportation's Federal Highway Administration and NACE International the Total Cost of Corrosion in the USA is \$276 Billion/Year

- Utilities:
- Transportation:
- Infrastructure:
- Government:
- Product & Manuf:

\$47.9 billion/year (34.7%)
\$29.7 billion/year (21.5%)
\$22.6 billion/year (16.4%)
\$20.1 billion/year (14.6%)
\$17.6 billion/year (12.8%)

The Costs of Corrosion

Definition of Corrosion

Practical Tendency of a Metal to Revert to its Native State

 Scientific Electrochemical Degradation of Metal as a Result of a Reaction with its Environment

Definition of Corrosion

Definition of Corrosion

Electrochemical Reactions

 $Fe \rightarrow Fe^{2+} + 2e^{-}$ (iron oxidation)

 $H^+ + 2e^- \rightarrow H_2$ (hydrogen reduction)

 $\frac{1}{2}O_2 + H_2O + 2e^- \rightarrow 2OH^-$ (oxygen reduction)

Why Provide Corrosion Control?

 Regulatory Compliance
 Preserve Assets That Could Become LIABILITIES!
 Dramatically Reduce Likelihood of Product Releases
 Significantly Reduce Maintenance Costs
 Environmental Preservation

Common Causes of Corrosion

Metallurgical Differences
Heterogeneous Electrolyte
Low Resistivity Electrolyte
Dissimilar Metals
Oxygen Concentration
Stressed Areas

Elements of a Corrosion Cell

 ANODE
 CATHODE
 ELECTROLYTE
 ELECTRICAL CONNECTION

Corrosion Cell Caused by Foreign Material in Sand Cushion

Steel Tank Floor

Corrosion Caused by Poor Water Drainage

Ð,

Bimetallic Corrosion

Effect of Corrosion

Importance of Corrosion Control

Preserve Assets
Reduce Maintenance Costs
Reduce Inspection Costs
Environmental Compliance
Preserve The Environment

State Level Requirements

- Approximately 25% of States now require cathodic protection be installed and maintained on new, refurbished, or repaired tanks in contact with soil or sand foundations.
- A number of other states are in the process of implementing regulations governing AST's.

Cathodic Protection

Proven electrochemical technique to stop corrosion

Used extensively in the oil and gas industry

Applied to new or existing structures

Cost effective

Minimum maintenance and easy to test

Cathodic Protection

Galvanic Anode Cathodic Protection
 Impressed Current Cathodic Protection

Galvanic Anode Cathodic Protection

External Galvanic Protection

Internal Galvanic Protection

Galvanic System

- Difficulty in meeting NACE -850mV Criteria
- Sand Quality impacts anode performance / life
- Typically Very Short Life / Poor Track Record
- Not recommended for large diameter AST's

Impressed Current Cathodic Protection

Distributed Anode CP System

Deep Anode CP System

Directional Bore Under Tank for Anode or Reference Cell Placement

Directional Bore Under Tank

Prepackaged Linear Anode Under Tank Retrofit CP System

Computer Guided Horizontally Bored Anode System

New Tank Construction with Liner

Impressed Current CP Storage Tanks with Liner

Anode & Reference Cell Placement in High Resistance Sand

CP Installation on Double Bottom Tank

Inspection of CP System

Cathodic Protection Testing

Easy test methodsEstablished criteria

Recommended Practices

API-651 -

Cathodic Protection of Aboveground Petroleum Storage Tanks

NACE RP0193 - External Cathodic Protection of On-Grade Carbon Steel Tank Bottoms

NACE Standard Recommended Practice

NACE Standard RP0193

Section 4.3.1.1. A negative cathodic potential of at least 850 mV-CSE with the cathodic protection applied. Voltage drops other than those across the structure to electrolyte boundary must be considered...

Section 4.3.1.2. A negative polarized potential of at least 850 mV-CSE

Section 4.3.1.3. A minimum 100 mV of cathodic polarization

- Be aware of all regulations that may pertain to your tanks and piping. When in doubt talk to the governing agencies.

 Engage NACE qualified & experienced personnel to engineer/maintain your cathodic protection system.

Refer to NACE/API Standards for guidance.

THANK YOU

QUESTIONS?

An Insituform Company