

National Institute for Storage Tank Management

Cost Effective Design Options for Tank Heating

September 11, 2009

Agenda

Tank Heating Options

Non-Heating Considerations

Cost Evaluation Methods

Resources

Tank Heating Products

Tank Coils

· Steam or Liquid

Electric - Replaceable

Electric – Direct Immersion

Jacketed / Indirect Heat

Coils – Plant Steam

Pros

- Low Cost Steam (Already Installed)
- Existing Piping
- Heating Capacity Upgrades
- Good Heat Transfer

Cons

- No Backups
- Heat Trace / Insulate Lines longer runs
- Ancillary Equipment (Traps, Valves, etc.)
- Potential Internal Interference (Mixer, Quench, etc.)

Retrofit Consideration

May require significant rework for coil installation.

Coils – Localized Steam

Pros

- Local Control
- Efficient Energy Use
- Fossil Fuels or Electric (+/-)

Cons

- Higher Heating Equipment
 Costs
- Limited Capacity
- Additional Footprint requirements

Retrofit Consideration

- Smaller tanks may use overthe-side coils

September 2009 5

Water / Oil Exchanger

Pros

- Low pressure piping
- Even Heat Distribution
- Controlled Max. fluid temperatures

Cons

- Water Treatment / Oil Maintenance
- Pump Maintenance
- Lowered Transfer Rates =
 More Surface Area Required
 (Diameter / Length in Piping)

Retrofit Consideration

 May require significant rework for coil installation.

Immersed Electric

<u>Pros</u>

- Virtually 100% efficient
- Quick initial heat up
- Easy Installation
- Hazardous Area Rated

Cons

- Draining Tank for Changes
- Corrosion consideration
- Surface Area / Space Consideration
- Element Support / Protection

Retrofit Consideration

- Typically External ANSI Flange
- Internal Support for longer units
- Multiple units
- Tank Draining?

Replaceable Electric

Pros

- Efficient / Quick Heat Up
- Simple Installation / Easy Replacement
- No Tank Draining for Maintenance
- Hazardous Area Rated

Cons

- Electrical Costs
- Larger Heating Requirements = Higher Amperage / Wire Runs

Retrofit Consideration

- May fit existing coils / pipe
- Typically External ANSI Flange
- Internal Support for longer units
- Multiple units

Jacketed / External Heat

• Pros

- No Internal Tank Considerations
- No Fluid Contact*
- No Tank Draining

Cons

- Lowest Efficiency Tank Material
- Limits on Surface Area / Temperatures
- Maintaining Liquid Levels
- Remove Insulation to Service

Retrofit Consideration

- Good for smaller heating requirement
- Pump w/ heaters for larger needs

Tank Heating Options - Summary

Coil Heating

- Pros
 - Lower Operating Costs
 - Largest Heating Tanks
 - Addition of Tanks

- Higher Initial Cost for Equipment & Installation
- More complexity
 - Maintenance Cost
 - Control Systems

Replaceable

Direct

Non-Coil Heating (Immersion Heaters)

- Pros
 - Efficient Power Input & Control
 - Singular Additions
 - Hazardous Locations
- Cons
 - Corrosion (direct heating)
 - Electric Rates Review

Heater / Temperature Control

- Control Valve
 - Pressure or Flow
 - On-Off or Proportional

- Temperature / Loading Variations
- Turndown ratios / lowered efficiency

- Contactor ON / OFF, Less \$ Wider Band
- SCR 0-100% scale, Higher \$ Tighter Band
 - Prolongs Heater Life
 - Larger Electrical Enclosure than Contactor

Heat Up Time vs. KW/BTU requirements for Maintenance

Extended Heat Up times = Increase Efficiency

Target Energy level slightly above maintenance temperatures.

Centralized vs. Decentralized Control

Local Panel

- Panel, heater, and controls are pre-wired at the factory.
- Temperature and setpoint indication located at the tank.

Integrated Control System - PLC

- Process and overtemperature controllers easily communicate with central control systems.
- Many central PLC or DCS
 systems have control logic
 already built-in, so the heater
 accepts remote setpoints from
 PLC.

Liquid Level Sensor / Control

- Why Liquid Level Control?
 - Properly monitor Process Conditions
 - Overfilling & Refill Levels
 - Daily Usage
 - · Critical for External Heating

- Protection of Heating System
 - Exposed Exchangers / Heating Elements no heat transfer
 - Exposure of temperature sensors overheating liquid
 - Hot Spots on Exchangers / Elements Coking Fluid

- Temperature Sensor Location
 - Outlet Temp Lag Time
 - Bulk Stratification
 - Mixer

Long Piping Runs (Steam / Pumping)

- Line Tracing
 - Steam Tracing (Oil / Water)
 - Electrical
 - Self Regulating (Freeze Protection, 150 deg. F)
 - MI (Metal Sheath, 1100 deg. F)
 - What else needs tracing?
 - Valves
 - Pumps
 - Supports
- Insulation and Weatherproofing
 - No Insulation can equal 10x increase in heat needs
 - Decreases Temperature Variation in tank / piping
 - Freeze Protecting
 - Maintaining desired viscosities for pumping

Hazardous Locations

- Environmental Conditions
 - Indoor
 - Outdoor Coastal (Salt Air) , Seismic, Humidity, etc.

- What is the Area Classification?
 - Hazardous Rating
 - Class, Division, Group

Class I — Groups A, B, C & D - Division 1 or 2 Temperature Rating T1 - T6

Class II — Groups E, F & G - Division 1 or 2 Temperature Rating T1 - T6

Class III — Division 1 or 2

- Certification
 - Safety Liabilities Installation
 - Insurance requirements
 - UL, CSA, ATEX, ASME, etc.

Total Cost of Ownership

Initial Cost

- Tank
 - Coils or None
 - Insulation
- Heating Equipment
 - Unit Cost
 - Installation Cost
 - Wiring
 - Piping
 - Valves, Traps
 - Heat Tracing / Insulation
 - Exhaust / Pollution Control
- Start-up / Commissioning

Yearly Cost

- Operating Cost
 - Raw Fuel Cost
 - Efficiency Rating
 - Piping Losses
- Maintenance
 - Cleaning
 - Spare Parts
 - Inspection Visits
 - Local Inspectors
 - Equipment Contract
 - Downtime
- "X" Factor
 - What is your facility experience
 - Long Term Growth vs. one time

Where to Look

- Product Sales / Application
 Engineers
 - Specific Product Knowledge
- Internet
 - Department of Energy, Trade Associations, Search Engines
- Company Technical Resources
 - Technical Sections, White Papers, Published Articles
- Professional Engineering Firms

Serving the Process Heating Industry