

Latest Research Results for Gasoline Tank Overfill Vapor Clouds

PEMY Consulting Philip Myers - phil@pemyconsulting.com National Institute for Storage Tank Management September 19,2013 Houston Texas,

Double Tree by Hilton Hotel Houston Hobby Airport

Most Recent Work

- Funded by UK HSE
- Research Report 908
- PSLG Final Report

• But hard to use and interpret

Vapour cloud formation

Experiments and modelling

Prepared by the Health and Safety Laboratory for the Health and Safety Executive 2012

HSE Model Simple (can do on calculator) But what are the right Inputs?

- Diameter
- Height
- Flow rate
- Air temp
- Fuel temp
- Release duration

 Answer: There is no "right input" – how can we use the HSE Model

Basic Model and Test Set Up

Overtopping liquid

Breather vent

Deflector plate

Deflected liquid

Figure 14b: Comparison between cascade droplet structure in water (left) and decene (right) in similar conditions

20

Liquid and vapour temperature profiles

What to do?

- Look at individual tank
- Look at likelihoods on average

HSE Model Simple (can do on calculator) But what are the right Inputs? What to do?

- Diameter
- Height
- Flow rate
- Air temp
- Fuel temp
- Release duration

- Answer: There is no "right input" how can we use the HSE Model
- Look at individual tank
- Look at population of tanks
- Look at likelihood on a population and societal (regulatory impacts)

Table 1 Validation Calculation		
Variable	RR908	Validation
Input variables		
D, tank diameter, meter	25	25
H, tank height, meter	15	15
F, fuel flow rate, kg/s	115	115
Tfuel, fuel temp, deg C	14	14
Tamb, ambient air temp, deg C	0	0
T, duration of release, sec	1400	1400
Calculated variables		
Mass entrainment in cascade, kg/s	108	108.0149
Concentration at tank foot, mass	.153	0.1545
fraction		
Mass vaporized, kg/s	19.5	19.7434
Mass splashed, kg/s	2.2	2.3000
Mcloud, mass addition rate to cloud,	259	260.1166
kg/s		
Vcould, vol addition rate to cloud,	199	199.8591
m3/s		
Conc of fuel vapor in cloud , kg/m3	0.11	
Results of interest		
Possano motor	210	211 0260

Table 2 Calculation for Puerto Rico			
Variable	Values		
Input variables			
D, tank diameter, meter	45		
H, tank height, meter	16		
F, fuel flow rate, kg/s	320		
Tfuel, fuel temp, deg C	14		
Tamb, ambient air temp, deg C	0		
T, duration of release, sec	1560 (26 minutes)		
Calculated variables			
Mass entrainment in cascade, kg/s	223.1844		
Concentration at tank foot, mass fraction	0.1751		
Mass vaporized, kg/s	47.3804		
Mass splashed, kg/s	6.4000		
Mcloud, mass addition rate to cloud, kg/s	553.9297		
Vcould, vol addition rate to cloud, m3/s	425.6087		
Conc of fuel vapor in cloud , kg/m3	0.1264		
Results of interest			
Rescape, meter	325.0705		
Rignition, meter	459.7192		
Actual ignition radius, meters (see above) 371			
"Radius" of Vapor Cloud for Puerto Rico about 371			
vs calculated of 325.			

This is good agreement!

For one tank with many conditions or many tanks with many conditions use Monte Carlo Simulation

Summary and Conclusion

- Like any serious bad incident a unique combination of circumstances must happen (i.e. the Harry Reason "swiss cheese diagram"
- But these bad events do happen so the question is
 is it going to happen to you?
- Risk management is the key. Simple risk matrices and what if type analyses are not good enough. Semi quantitative methods as a minimum (fault trees, event trees, bayes nets, etc)
- But, really, all of these best practices covered by API 2350 so use it!