NISTM National Institute for Storage Tank Management

Vapor Corrosion Inhibitors (VCIs) for Storage Tanks Corrosion Controlled Cost Controlled

Presented by Kelly Baker, Zerust Oil & Gas Efim Lyublinski, Monique Posner, Terry Natale, Yefim Vaks, Ronnie Singh Northern Technologies International Corporation, USA

> Marcelo Schultz Petrobras, Brazil

Topics For Discussion

- 1. Problem definition
- 2. Corrosion protection of storage tanks soil side bottom (SSB)
- 3. Corrosion protection of oil storage tank roofs
- 4. Conclusions

Problem Definition

Corrosion Is One Of The Biggest Problems In The Oil And Gas Industry Worldwide

<u>Risks</u>

- \succ Critical risks from corrosion of storage tanks are:
 - ✓ Loss of product
 - Contamination of environment
 - ✓ Critical component down time
 - \checkmark Risk of fire and explosion

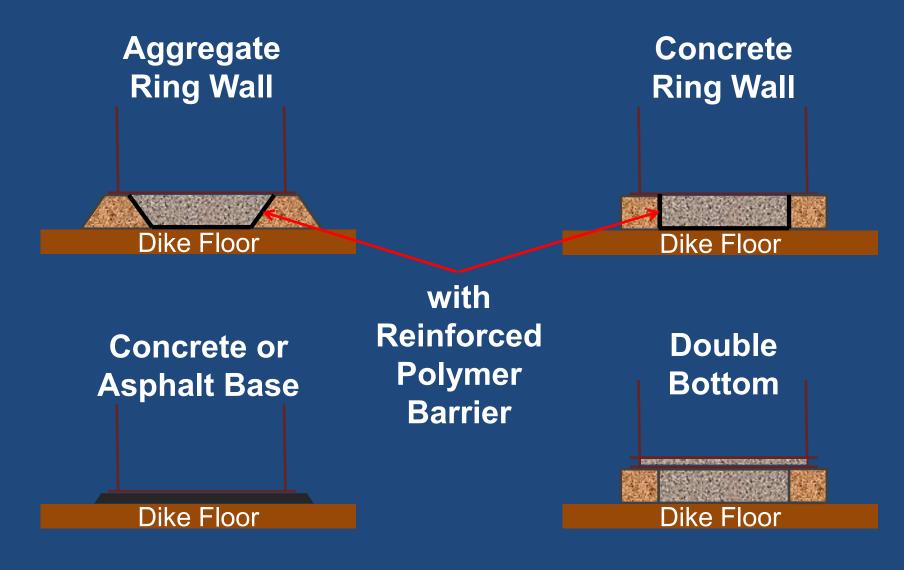
<u>Costs</u>

- Estimated corrosion costs:
- Maintenance Costs:
- Loss of oil production:
- Production Industries

- ~ \$0.40 per barrel of oil produced
- ~ 60% of all are related to corrosion
- ~ 10%
- ~ \$12.8B annually in 2002

Existing Solutions

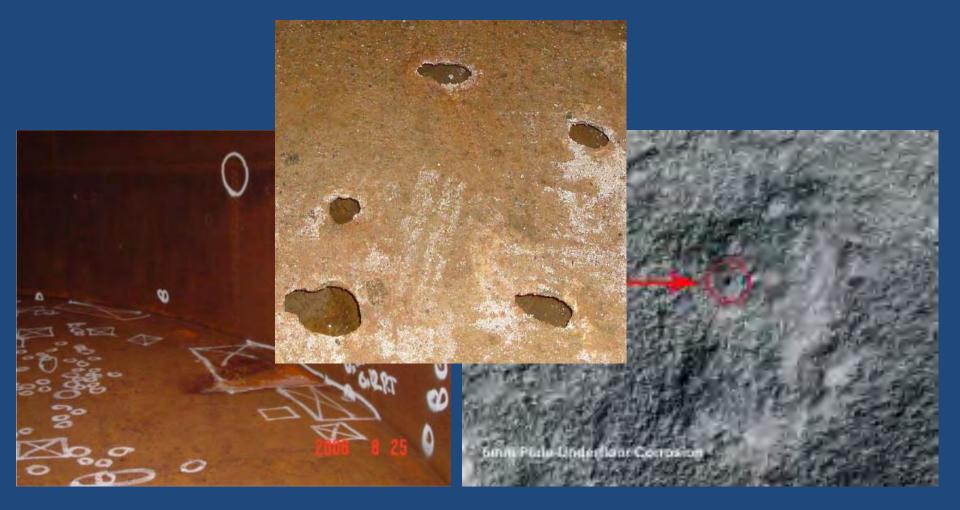
Existing Corrosion Protection Methods (CPM)


Some CPM may not be appropriate or are not efficient when used alone:

- Cathodic Protection Systems (CPS)
- Coatings / Linings
- Volatile or Vapor Corrosion Inhibitors (VCI)

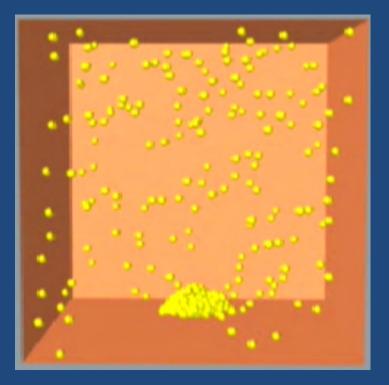
Discussion focus:

- Crude oil storage tanks soil side bottoms (SSB)
- > Tank roofs
- Case Studies of these VCI solutions

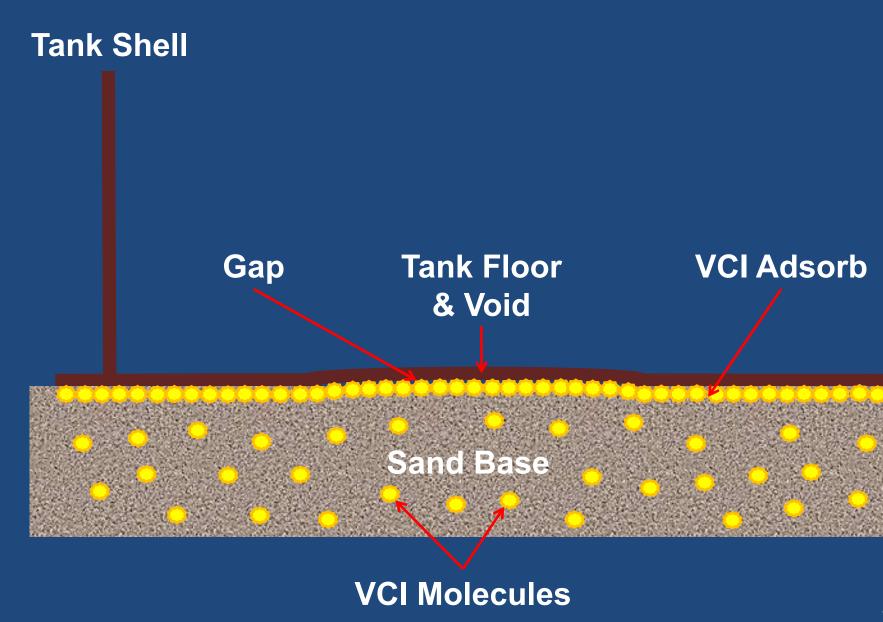

Tank Bottom Geometries

Cone Up - Flat - Cone Down

Examples of Problems


Penetrations due to tank bottom corrosion

What are VCIs?

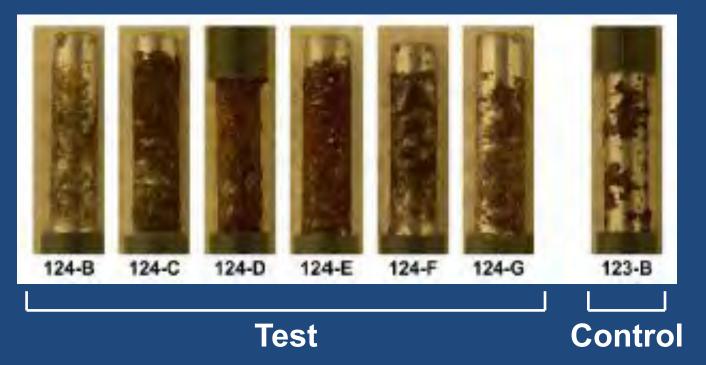

- A class of corrosion inhibiting compounds which have vapor pressures higher than that of air.
- This results in the release of vapor molecules of inhibitor into the air.
- These molecules will adsorb to the surface of steel and block other molecules from coming in contact with the steel.

- Can protect immersed surfaces
- Not a 'coating'
- Does not change metallurgy
- Not permanent

- Can be painted/welded
- Non-toxic
- Can be designed for specific service exposure

How Do VCIs Work Under Tanks?

Case Study – Double Bottom


Soil Side Bottom (SSB) Protection

Test		Control
G VCI in Sand	Test	No VCI
	Coupons	C B Y

Coupon Tests

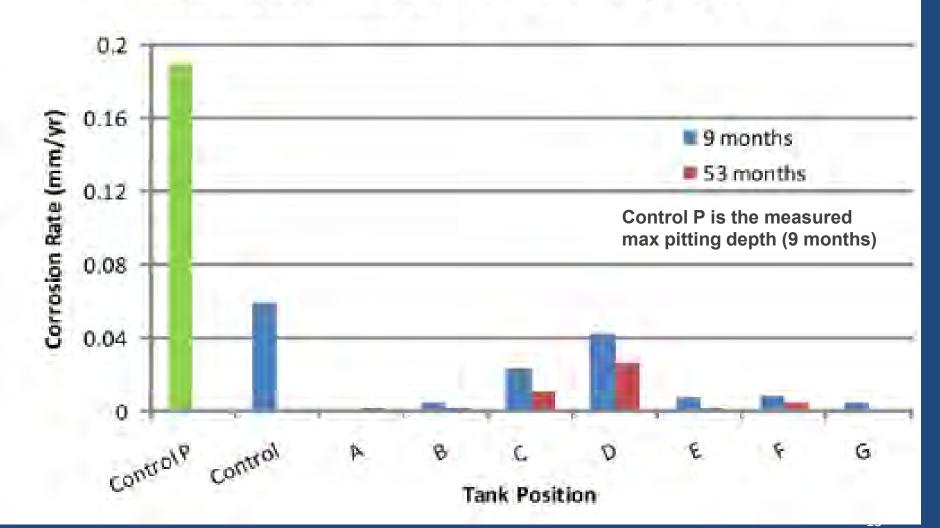
Coupons were removed in 2007 and 2011 for corrosion rate evaluation according to ASTM G1-03

1018 Carbon Steel

Surface Area Results

Surface Area Affected by Corrosion - 2007 Specimens

Specimen Type	Specimen ID	% Corroded Surface Area	Predominant Type of Corrosion
	В	86	
	С	81	
Test Tank	D	85	Uniform /
	E	57	General
	F	61	
	G	43	
Control Tank	Control	22	Pitting

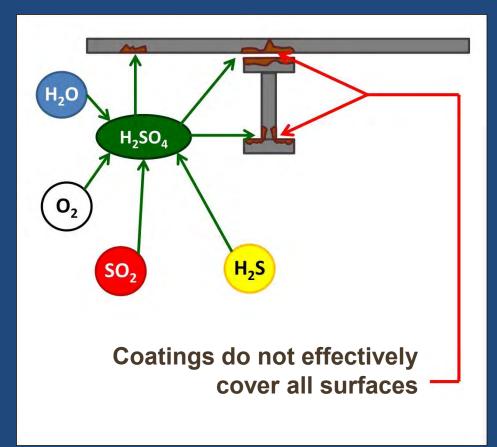

Corrosion Rate Results

Specimen Type	Specimen	Corrosion Rate (mm/year)		
Specimen Type	ID	2007 Specimens	2011 Specimens	
	Α		0.0014	
	В	0.0041	0.0013	
	С	0.023	0.010	
Teet Teels	D	0.042	0.026	
Test Tank	E	0.0075	0.0017	
	F	0.0085	0.0041	
	G	0.0050		
	ALL (Avg)	0.015	0.0075	
Control Tank	Control	0.059		
	Control P*	0.19		

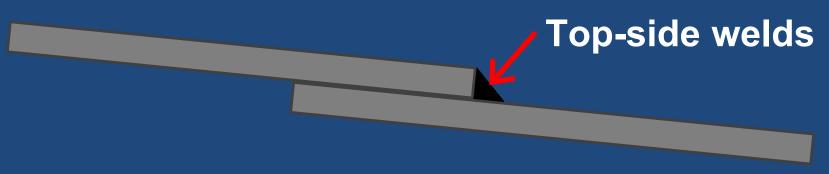
* Control P is the measured maximum pitting depth

Results Continued

Corrosion Rate vs. Time Exposed


Soil Side Bottom - Conclusions

- 1. VCIs can work in conjunction with other forms of corrosion protection or stand-alone.
- 2. Can be installed under almost any tank pad design.
- 3. Tank pad design determines whether the original VCI installation can be accomplished while the tank is in service, or if it needs to be out-of-service.
- 4. VCI can be <u>replenished</u> as needed over time without taking the tank out-of-service, in any of the scenarios mentioned above.
- 5. Testing indicates that VCIs have a significant impact on reducing pitting corrosion.
- 6. Reduction in corrosion rates extend the life of the asset and the maintenance interval.


Difficulty in Protection

Tank roof and support beam

Flexing of Plates

Steel roof plates

Flexing of roof plates allows for crevice corrosion

Vapor Space Environments and Corrosion Rates

Basic Composition Tank Top Vapor Space Atmospheres

Typical vapor space environment for a crude oil storage tank considered in developing the corrosion protection solution

Components	O ₂	SO ₂	H₂S	Cl-	N ₂	CO ₂	H ₂ O
Contents, %	4.0	1.0	1.0	0.5	70.0	12.0	0.5

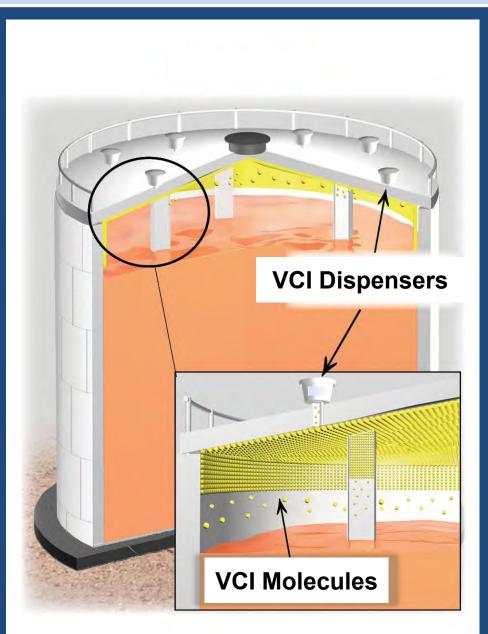
Relative humidity (RH): Close to 100%

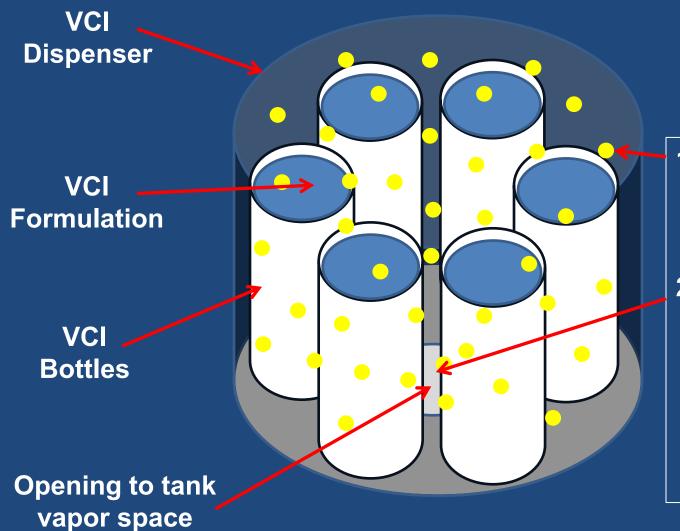
Temperature: Ranges up to +80 C

Corrosion environments are unpredictable.

Corrosion occurs in the acidic condensed water layer (pH as low as 2-5) on the inner surface of the tank roofs

Type of Corrosion:	General	Galvanic	Pitting	Crevice
Corrosion Rate, mm/year, up to:	0.5	3.0	5.0	8.0


VCI Delivery System



- Molecular vapor pressure disperses the inhibitor from canisters installed during a tank shutdown.
- Inhibitor levels can be monitored and replenished while the tank is "In-Service".

VCI in Vapor Space

Works on Vapor Pressure – No Moving Parts

 Liquid VCI volatizes into a vapor.

2. Vapor pressure forces the VCI molecules down through the opening into the tank vapor space.

Field Trial and Results

Location: Petrobras refinery in Brazil Setup: Two crude oil storage tanks - with and without VCI protection

Environment Conditions Of Tanks

Basic Parameters		Monitoring Results			
		Tank 1 (Control)	Tank 2 (With Inhibitor)		
Temperature, °C		20 – 55			
RH %		40 - 100			
	O ₂ (%)	18-18.9	10 - 21		
Concentration	SO ₂ (ppm)	1.0-7.0	> 20		
	H ₂ S (ppm)	3.0-6.0	> 26		

Test tank (with inhibitor) environment was more aggressive than that of the control tank

Trial Results

Average Roof Thickness Loss

Exposure Time	Average Total Roof Thickness Loss (mm)			
(days)	Tank 1 (Control)	Tank 2 (With Inhibitor)		
90	0.17	0.03		
185	0.25	0.06		

Even with the more aggressive environment, a 4-fold reduction in thickness loss was achieved with applied VCI protection

Tank Roof - Conclusions

- 1. 4-fold reduction in thickness loss in trial with VCI application.
- 2. Reduction in thickness losses translates into increased tank service life.
- 3. Corrosion Protection System applicable to new and existing AST roofs.
- 4. Corrosion Protection System Advantages:
 - > Reduces tank down time (for replacement of tops or coatings)
 - Eliminates need of more expensive construction materials (stainless steel, aluminum and plastic) instead of carbon steel
 - Reduces risks of environmental contamination, fire and explosion

Thank you for your attention! Questions?

Kelly Baker kbaker@ntic.com 832-465-5668