

Reducing Storage Tank Emissions Without Compromising Operational Performance

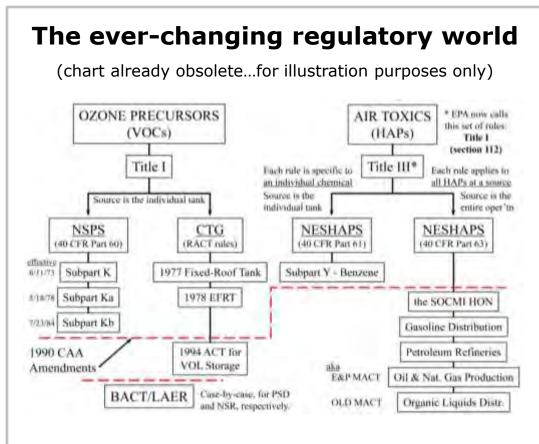
Jeff Eickhoff

Vice President of Sales & Marketing, HMT Inc.

Presentation Overview

- Tank Emissions Mechanisms
- Tank & Floating Roof Types
 - And their impacts on emissions
- Design Strategies for Low Emissions
 - (Floating roof tank options)
- Other Minor Strategies

Operational Performance Factors

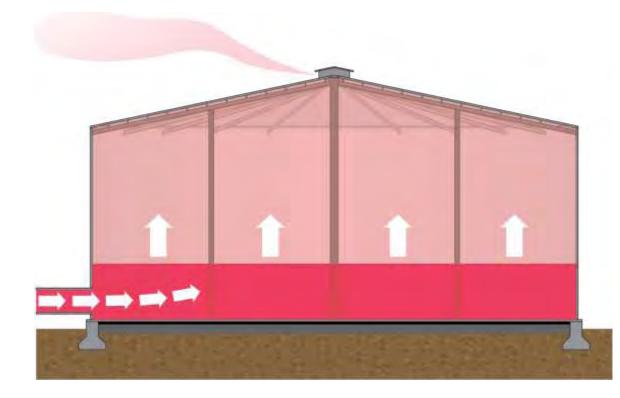

- Working Capacity
- Heel Reduction
- Safety
- Accessibility
- Fire Protection
- Maintenance (painting, drains, water removal, snow, etc.)
- Durability & Useful Life
- Installation (ease, speed, cost)
- Ease of Cleaning and Inspection
- Initial Cost (project cost and cost per barrel of capacity)

Regulatory Considerations

- These are general design concepts presented here
- Your regulations and specific situation may vary
- Check with your environmental group to verify requirements

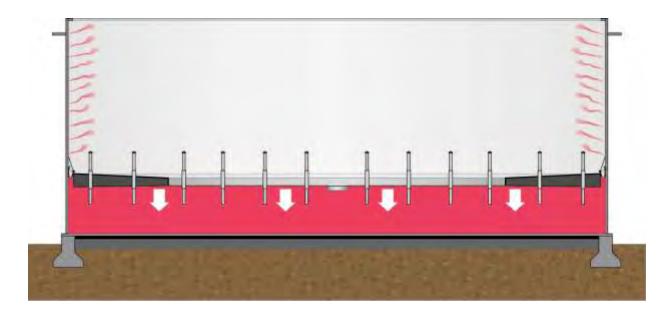
* Chart courtesy of Rob Ferry, the TGB Partnership

Tank Emissions Mechanisms


1

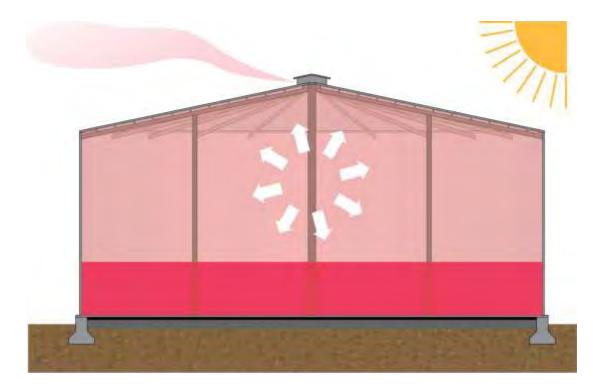
Mechanisms for Evaporative Loss

• Working (or "filling") losses – Cone Roof Tanks


- Average temp
- Temperature changes
- Tank cycle frequency
- Vapor pressure
- Tank diameter and height
- Tank color

Mechanisms for Evaporative Loss, continued

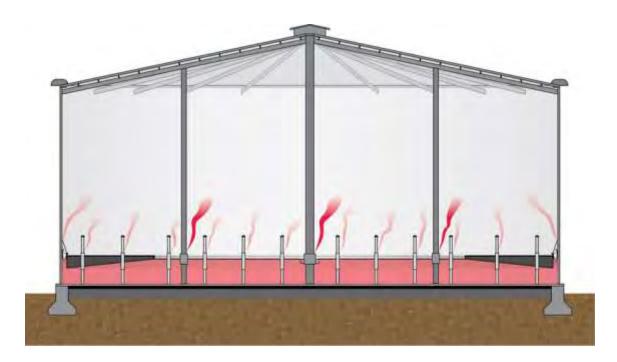
• Withdrawal losses – Floating Roof Tanks


- Tank cycle frequency
- Tank shell condition
- Viscosity / clingage factors
- Floating roof seals
- Tank diameter and height

Mechanisms for Evaporative Loss, continued

• **Breathing losses** – Cone Roof Tanks

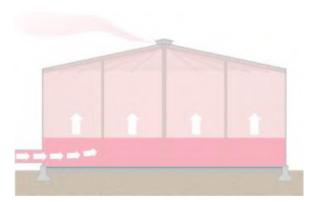
- Average temp
- Temperature changes (especially from sunshine and cloud patterns)
- Vapor pressure
- Tank diameter and height
- Tank color



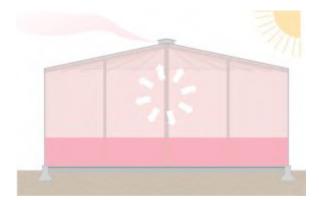
Mechanisms for Evaporative Loss, continued

• **Standing losses** – Floating Roof Tanks

- From rim seals, deck appurtenances and deck seams



- Average wind speed (for EFRTs)
- Average temp
- Temperature changes
- Vapor pressure
- Fixed roof (IFRT) vs. none (EFRT)
- Floating roof type
- Deck penetrations
- Floating roof seals
- Tank color



Where can we make an impact?

Working losses

Breathing losses

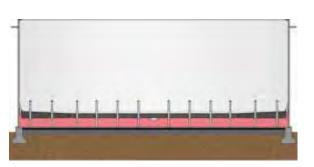
Withdrawal losses

Standing Losses – Design / Selection Factors

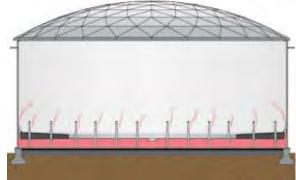
• Fixed roof over the floating roof

Floating roof penetrations and features

- Perimeter seal types
- Deck seams (for bolted construction IFRs)
- Appurtenances
 - Columns penetrations
 - Adjustable leg penetrations
 - Gauge pole / ladder penetrations
 - Manways
 - Pressure / vacuum release vents


2

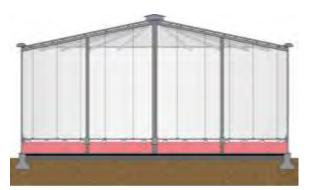
Tank & Floating Roof Types and Impact on Emissions



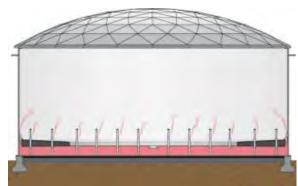
Floating Roof Tank Types


Traditional EFRT

Leg-supported Pontoon EFR


Domed EFRT

Leg-supported Pontoon EFR, Retrofitted w/Geodesic Dome


Traditional IFRT

Leg-supported IFR under Steel Cone Roof


Suspended IFR

Suspended IFR under Steel Cone Roof

IFRT with Dome

Leg-supported IFR under Aluminum Geodesic Dome

Suspended IFR + Dome

Suspended IFR under Aluminum Geodesic Dome

Internal Floating Roof Types

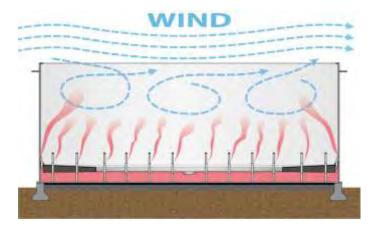
No

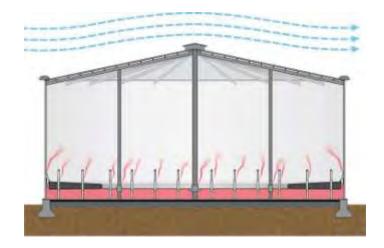
৸৳

NÞ

- Steel Pan
 - Steel Bulkhead
 - Steel Pontoon

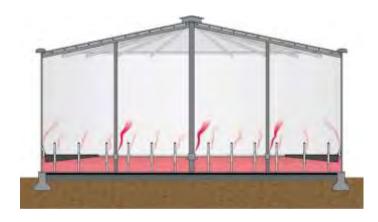
- Heavy Duty Skin & Pontoon
- Bolted-seam Panel Construction Full Contact
 - Welded-seam Panel Construction Full Contact

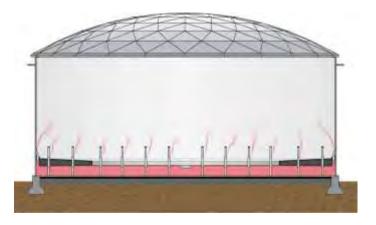

ALUMINUM


Composite (GRP) Full Contact

Impact on emissions: Presence of a fixed roof

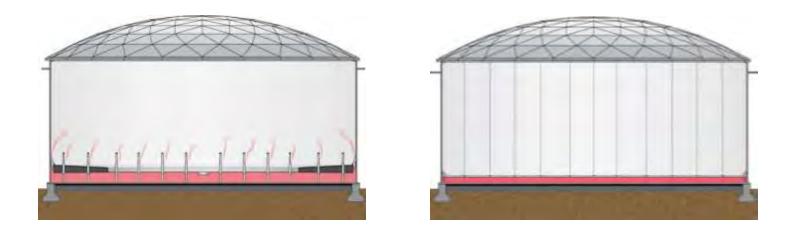
- Eliminates wind effect
- Also reduces liquid surface temp


Difference of 12,859 lbs per year


Based on 120' diameter tank in Houston storing RVP 10 Gasoline; 24 cycles/year

Impact on emissions: Cone roof vs. self-supported fixed roof

Column penetrations vs. none


Difference of 2,986 lbs per year

Based on 120' diameter tank in Houston storing RVP 10 Gasoline; 24 cycles/year

Impact on emissions: Leg-supported vs. suspended IFR

Adjustable leg penetrations vs. none

Difference of 2,940 lbs per year

Based on 120' diameter tank in Houston storing RVP 10 Gasoline; 24 cycles/year

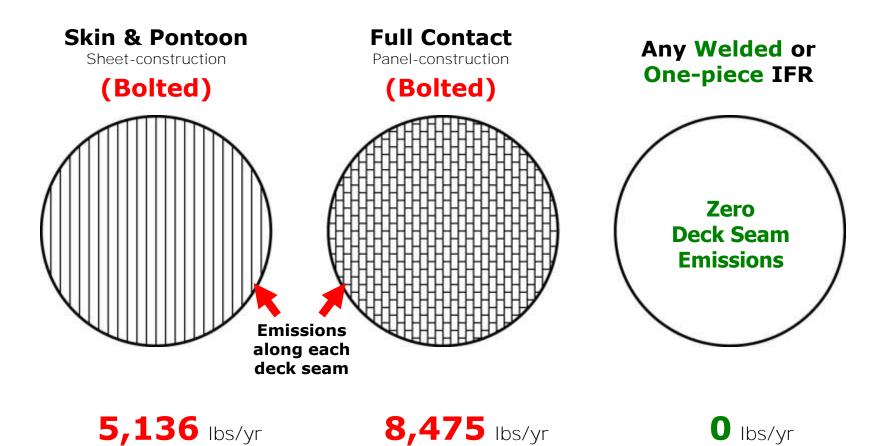
Impact on emissions: Bolted vs. Welded Construction

Bolted Construction

Skin & Pontoon AIFR Bolted sheet Construction Bolted Full Contact AIFR Bolted panel Construction Steel IFR or EFR Welded Construction Welded Full Contact AIFR Welded Construction

Welded Construction

Composite (GRP) One-piece Construction

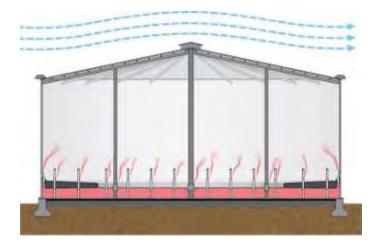

• Welded (one-piece) construction eliminates deck seam emissions

Impact on emissions:

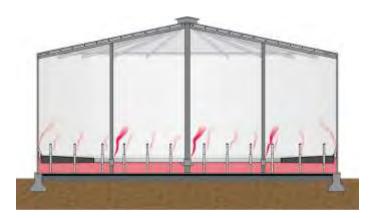
Bolted vs. welded (one-piece) IFR construction

Assumptions: 120' x 48' tank, 2' freeboard, Gasoline RVP 13, Houston, 24 turnovers/year.

Design Strategies for Low Emissions



First design choice: EFRT or IFRT?

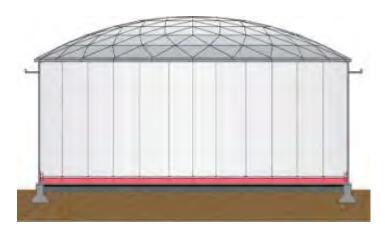

Advantages	Disadvantages		
Cost	Higher emissions		
Easier to achieve longer out-of-service inspection intervals	Bulky EFR profile doesn't optimize capacity		
	Painting/coating required		
	Drain maintenance		
	Limited material choices		
	Snow / ice hazards		
	Rainwater gets in product		

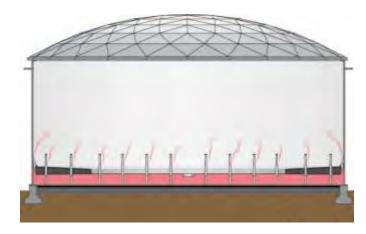
Advantages	Disadvantages
Lower emissions due to elimination of wind	Cost
More IFR type and material choices	10-year seal inspection
No drain maintenance	
Low-profile IFRs can gain significant capacity	
No snow / ice hazards	
No rainwater in product	

Second design choice: cone roof or dome?

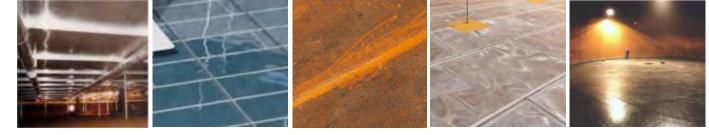
NISTM

			4	\sim	~	X	4	1
61	1	1	KI		11	1		1


Advantages	Disadvantages
Good for sealed / pressurized applications	Higher emissions (from column penetrations)
Shallower pitch is easier to walk on	Columns create other issues (corrosion, settlement, out-of- plumbness)
	Painting/coating required


Advantages	Disadvantages
Lower emissions	Visually taller profile
No columns to maintain	Steeper pitch at perimeter more difficult to walk on
No paint to apply or maintain	
Capacity gain at top (foam chambers or rafter clips)	

Third design choice: suspended or legs?


Advantages	Disadvantages
No tank entry required to change IFR positions	Not practical with steel IFRs
Lower emissions due to elimination of leg penetrations	Evaluation of designs recommended
Eliminates maintenance, inspection, repair issues associated with legs	Suspension from existing dome may not be possible
Multiple positions can be set for flexibility	

Advantages	Disadvantages		
	Tank entry required to set IFR positions		
	Higher emissions (from leg penetrations)		
	Legs create additional inspection / corrosion points		

Fourth design choice: IFR Type

Skin &Bolted FullSteelWelded FullCompositePontoonContactIFRContact(GRP)AIFRAIFRAIFRAIFR

Emissions	Fair	Poor	Good	Best	Best
Capacity	Best	Best	Fair	Best	Best
Speed of Install	Best	Fair	Fair	Fair	Good
Durability	Fair ¹	Fair/Good ²	Best	Good	Best
Corrosion Resistance	Poor to Good ³	Poor to Good ³	Poor to Good ³	Poor to Good ³	Best
Can be Suspended	Yes	Yes	No	Yes	Yes
Cost	\$\$ / \$\$\$	\$\$ / \$\$\$	\$\$\$\$	\$\$\$\$	\$\$\$\$

¹ Skin & Pontoon IFRs come in a wide range of weights and qualities; heavy duty skin & pontoon IFRs with bi-directional structure and connections designed to handle high cycles, high flow rates, and dynamic loading can last longer than the tank without major maintenance required

² Bolted full-contact IFRs also come in a wide range of qualities and designs; consult manufacturers for more information

 $^{\rm 3}$ Depends on product and whether steel roof is painted / coated

Alternate technologies have made significant advancements

Talk to your IFR suppliers to learn more

Emissions Comparison (Ibs/year)

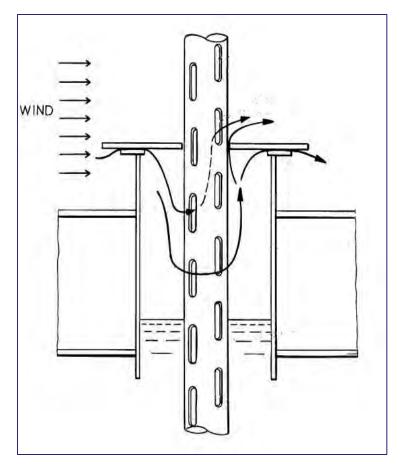
for Various Tank Configurations and Various Major Markets

	Common Tank Configurations						
Location	EFRT	Cone Roof Steel IFR Adj Legs	Cone Roof, Aluminum Skin & Pontoon IFR, Adj Legs	Cone Roof, Aluminum Bolted Panel AIFR, Adj Legs	Dome Roof, Welded Panel AIFR Suspended (no legs)		
Houston	20,896	8,037	12,960	14,423	1,464		
Los Angeles	17,701	7,196	11,594	12,902	1,327		
New Jersey	20,653	5,834	9,383	10,438	1,090		
Chicago	18,975	5,245	8,426	9,372	991		
Tulsa	24,597	6,887	11,092	12,343	1,271		
New Orleans	21,808	8,040	12,965	14,430	1,465		
Singapore	18,837	10,553	17,046	18,977	1,891		
Saudi Arabia	41,181	11,445	18,495	20,591	2,058		

Assumptions

- All tanks are 120' diameter x 48' tall with 44' of working capacity (3,722,518 gal)
- Stored product is gasoline, RVP 10
- Each IFR equipped with primary mechanical shoe seal and rim-mounted secondary seal
- Each IFR with the exception of the welded IFR is equipped with adjustable deck legs
- Emissions based on 24 tank turnovers per year
- Bolted panel based on a 5' x 12' panel; bolted sheet is 5' wide
- All deck fittings "Typical" except the suspended IFR, which has no leg penetrations
- Cone roofs have 7 columns

Other minor strategies


4

Gauge Pole Sleeves

- Gauge Pole Wells are often overlooked as large sources of emissions and product loss
- Large liquid surface area
- An improperly sealed gauge pole can emit more than 25 times the VOCs as the entire primary and secondary seal systems combined
- Wind makes the problem worse

Gauge Pole Sleeves, continued

Roof Leg Socks

Tank Diameter

- Smaller diameter = less emissions
- Strategy:
 - Get soil analysis done early in the game to see if you can go up in height and reduce diameter

Summary of Strategies

Major design strategies

- Eliminate wind effect (cover the tank)
- Eliminate columns (use a self-supported fixed roof)
- Eliminate leg penetrations (suspend the IFR)
- Eliminate deck seams (use welded or one-piece construction)

Other minor strategies

- Gauge pole sleeves
- Leg socks
- Tank diameter (early in design process)

Thank You

Questions: jeickhoff@hmttank.com

www.hmttank.com