

Foundation Solutions for New Tanks

NISTM – 6th Annual International Aboveground Storage Tank Conference and Trade Show – September 19, 2013

Presentation Outline

- Some Definitions to set the stage
- Design Considerations for Supporting Tanks
- Ground Improvement Tank Support Methods
 - Stone Columns
 - Soil Mixing
 - Wick Drains
 - Other Improvement
- Conclusions

Presentation Outline

- Some Definitions to set the stage
- Design Considerations for Supporting Tanks
- Ground Improvement Tank Support Methods
 - Stone Columns
 - Soil Mixing
 - -Wick Drains
 - Other Improvement
- Conclusions

Above Ground Storage Tanks are not built on the best sites, so they offer foundation challenges

- Soft Compressible Soils
 - The load is always there
 - Differential Settlements offer maintenance challenges
 - Edge stability can lead to catastrophic consequences
- Mixed bearing soils and placed fills
- Foundations available
 - On grade
 - Ring beam
 - Piled slab
 - Improved Ground

Soft soil beneath the tank can consolidate with time rendering the tank useless

งมมามผู้สมระ

Lack of sufficient edge stability can create floor plate failure or buckling of shell

What does the Load Distribution under a tank look like?

What types of Ground Improvement methods are tank friendly?

- Stone Columns
 - Vibro Piers
 - Aggregate Piers
 - Geo Piers
- Wick Drains Vertical Drains (PVDs)
 - Need surcharge + time
 - Using the tank for surcharge is risky
- Displacement Piles CMCs, DeWall Piles, CSCs
- Rigid Inclusions
- Deep Dynamic Compaction
- Soil Mixing Wet and Dry Methods

Why does Ground Improvement make sense for Tanks?

- Offers faster site turnover
- Predictable long term performance
- Higher Tank Capacities
- Controllable settlements
- Usually less expensive than traditional methods
- Flexible Designs
- Very good history in the USA as a widely accepted practice

Arrangement of Treatment

- Typically in a square pattern under the floor of the tank
- Replacement ratios from 10 to 50%
- Placement of elements directly beneath the shell
- Typically settlement criteria controls design

The Load Transfer Platform Must Provide Uniform Support of the Load from the Tank

- Uses a semi rigid transfer platform
- Designed to limit dishing between GI elements
- Crushed rock is fantastic...but sand will do
- Layers of geogrid to increase efficiency

Presentation Outline

- Some Definitions to set the stage
- Design Considerations for Supporting Tanks
- Ground Improvement Tank Support Methods
 - Stone Columns
 - Soil Mixing
 - -Wick Drains
 - Other Improvement
- Conclusions

Design soil parameters used in the Ground Improvement solution for support of the tank

Stability check is crucial to the success of the tank foundation project

งมมมมรัฐสมศส

14

Stresses under the tank as well as overlapping stresses from other tanks must be checked

Numerical model setup to analyze the long term performance of the Soil Mix support system

16

Important!

งมามส์สมรร

Presentation Outline

- Some Definitions to set the stage
- Design Considerations for Supporting Tanks
- Ground Improvement Tank Support Methods

 Stone Columns
 - -Soil Mixing
 - -Wick Drains
 - Other Improvement
- Conclusions

Vibro-Replacement or Stone Columns: reinforce the ground with aggregate

Vibro Systems

Vibrocompaction

VibroPiers / Aggregate Piers

Vibro-Replacement Stone Columns

Performed in-situ up to 120 feet deep

Effective above and below the water table

Performed using wet top-feed method or dry bottom-feed method

Commonly used for seismic response improvement

Typical Boring and design from the tank side of the project

- Stone Columns designed to carry 2/3 load from tank
- Treatment depths just into the dense sand
- Maximum center settlement – 4 inches
- Maximum perimeter settlement – 3 inches
- Satisfies all criteria

Hydrotest Data from Stone Column Supported tanks...the settlement has been designed

งมากรุ้สหร

22

Presentation Outline

- Some Definitions to set the stage
- Design Considerations for Supporting Tanks
- Ground Improvement Tank Support Methods
 - Stone Columns
 - Soil Mixing
 - Wick Drains
 - Other Improvement
- Conclusions

Soil Mixing methods can use a Wet process when dryer stiffer soils need to be mixed

Wet mixing process combines the binders with water and the binder is injected as a slurry during the mixing

Top down soil mixing process

The use of higher strength material in the design is possible with the wet installation process

Dry Soil mixing methods are utilized in wetter softer soils or where REM is a problem

Dry binder materials are pneumatically injected into the soil during the dry mixing process

Bottom up method of soil mixing

There must be adequate soil moisture for the binders to fully hydrate often limiting design strengths

งมากรุ้สงระ

Dry or Wet Mixing can be used to treat 100% of the soil to form blocks

งมากสุราชร

Dry Soil Mixing at Port Everglades to support tanks in organic soils

The Project was contracted as design-build and met the following criteria

- Design Strength
 - Allowable bearing capacity of 3,750 lbs/ft² for the in-situ soil mass
- Settlement
 - Planar tilting not to exceed 8 inches (100-ft diameter), 10 inches (125-ft diameter) across the diameter of the tank
 - Center-to-edge dishing not to exceed 5 inches (100-ft diameter), 6 inches (125-ft diameter)
 - Out of Plane Differential not to exceed 3/8 inch in an arc length of 30 feet

Dry mass mixing is working in block cell arrangement working from platform

Following Mass mixing, the tank foundation can be completed using ring beams

Following the work and after the tank is built the hydrotest is monitored from start to finish

31

Supporting tanks with Deep Mixed Columns and Mass Mixing can provide an economical solution

32

Construction of the Soilcrete Mat is the first step in the process

Mass Mix Cap is the first element to be installed. Design thickness of 10 feet.

Columns are installed through the soilcrete mat to complete the foundation system

Columns installed in a single pass depth of 75 feet

The three new tanks being constructed over the new structural support system using Soil Mixing

35

Monitoring the Tank to full height during hydrotest

36

Lots of Happy Tanks!

Presentation Outline

- Some Definitions to set the stage
- Design Considerations for Supporting Tanks
- Ground Improvement Tank Support Methods
 - Stone Columns
 - Soil Mixing
 - Wick Drains
 - Other Improvement
- Conclusions

Wick Drains – The General Idea

How are wick drains installed and how do they work?

- The Drains can be installed to depths greater than 100 ft.
- Very fast installation speeds
- The water has to go somewhere on site!
- Needs surcharge

THIM SAFE

BANGEN 44

Presentation Outline

- Some Definitions to set the stage
- Design Considerations for Supporting Tanks
- Ground Improvement Tank Support Methods
 - Stone Columns
 - -Soil Mixing
 - -Wick Drains
 - Other Improvement
- Conclusions

Dynamic Compaction (DDC)

Densification <u>Technique</u> Improves the ground through repeated applications of a falling weight. The energy generated at impact densifies the ground.

Best in free-draining ("granular") materials. Treatment depth usually <30 ft.

Dynamic Compaction for Chemical Storage

าสมหารัฐกระ

Ground Modification for Asphalt Storage Tanks

Conclusions

GI Method	Soft Soils, Compressible Soils, Organic Soils	Mixed Soils or Undocumented Fills	Liquefiable Soils or Clean Sands	Sandy Soils
Wick Drains	Excellent -Requires Preload -May require staged loading	Good -May require extra measures to install -Requires Preload -May require staged loading	N/A	N/A
Earthquake Drains	N/A	N/A	Good	N/A
Stone Columns or Aggregate Piers	Good -Sufficient settlement reduction may not be achievable	Very Good	Excellent	Excellent
Rigid Inclusions	Very Good	Very Good	N/A	Good
Soil Mixing - Columns	Excellent	Very Good	Excellent	Excellent
Soil Mixing - Mass	Excellent	Good to N/A -Depending on soil type	Excellent	Good

Thank You!! Questions?

Dennis W. Boehm dwboehm@haywardbaker.com Hayward Baker www.haywardbaker.com 509 North Sam Houston Parkway/Houston, Texas 281-668-1870

