NISTM June 27, 2013 Tank Conference Anaheim, California

PEMY Consulting Philip Myers 925-302-6707 Phil@PEMYconsulting.com

Fixed Roof Tank Over Pressure Incident

• An unexpected high flow rate of nitrogen surged into the tank at the arrival of the first pipeline displacement pig, causing the frangible roof seam on the Tank to part. Damage occurred on the tank roof, sidewall and tank stairway landing.

Lightning Strike Tank Seal Fire

A tank rim-seal fire was started when a 160,000 barrel open floating roof tank in gasoline service was struck by lightning. At the time of the incident, the tank was approximately ³/₄ full and had been undisturbed for approximately 3 weeks. The tank roof seals consist of a primary mechanical shoe seal and a secondary metallic wiper seal, which were installed in late 2000 when the tank was in diesel service. In 2004 the tank was converted to gasoline service. The seals were originally installed to minimize the amount of rainwater getting into the tank.

Seal Damage from Lightning-Related Fire

What went wrong

- The urethane that was used for the primary shoe seal fabric is compatible with diesel, but is not compatible with the oxygenate blended into gasoline. The fabric deteriorated after the tank was converted to gasoline service, which resulted in holes and tears in the fabric.
- No Management of Change was performed when the tank was switched to gasoline service, because the MOC process had not yet been implemented at this terminal location.
- The lightning shunts were not being inspected as part of preventative maintenance at this terminal, and some of them were discovered afterwards to not be in contact with the tank shell.

Lightning Strike Tank Seal Fire

Lessons Learned

- Compatibility of primary shoe seal fabrics with stored products is not widely recognized among the terminal workforce. To
 maintain this learning, an item related to this incident, including Lessons Learned, has been added to the Terminal and
 Operations Engineering SharePoint site.
- This incident helps to reinforce the importance of the MOC process, which is now in place at this location.
- Visual inspection of lightning shunts has been added to the monthly tank inspection checklist.

Floating Roof Collapse and LOC

What went wrong

- The tank was isolated three months prior to the spill incident, which included closing and locking the roof drain valve.
- Almost no inspection of the roof was being performed by terminal workers, despite frequent rainfall in the area. Excessive water accumulation on the roof caused the landing legs to collapse.
- The contract Entry Supervisor reported an excessive amount of water on the tank roof shortly after he ordered his worker out of the tank; however, no corrective actions were taken.

Floating Roof Collapse and LOC

Lessons Learned

- Always perform frequent inspections of EFR tanks, whether in-service or out-of-service, in order to determine, among other things, liquid accumulation on the roof and to drain the roof when necessary.
- Always conduct inspection of EFR tanks following rain storms to help ensure that the roof is drained of accumulated water arising from the rain fall.
- Always conduct pre-job planning and risk assessment as the first step in the equipment isolation process and in the preparation of the Isolation Checklist, and always ensure that Terminal Management approves the isolation plan before implementing.
- Senior and more experienced facility personnel must always take ownership for ensuring that critical reviews are conducted on all plans that can affect the safety of the facility in which they work, and always exercise Stop Work Authority where there is doubt regarding the adequacy of such plans, irrespective of the perceived level of final authorization.
- Always address abnormal conditions and take deliberate steps to respond to safety concerns in order to ensure that risks created by the presence of a potential hazard are assessed to help prevent possible losses.

How Do You Assess Risks?

 Guesses, hunches,arm-waiving, or just keeping the blinders on are not uncommon, but there are better ways...

What is Risk?

- Risk is the combination of:
 - the likelihood of a failure (LOF) that causes a loss, and
 - the consequence of that failure (COF)
- Risk = LOF x COF

Risk Assessment and Management

- Risk can be assessed by determining:
 - What can go wrong
 - How likely is it to happen, and
 - What would be the consequences
- Risk can then be managed by instituting strategies to reduce the risk

Details of Consequence Analysis

- Above ground release scenario:
 - Release volume: flow rate and duration.
 - Flow rate: overfill rate or hole size.
 - Also account for dike containment and distance to offsite receptors.

AST Consequence Analysis Overview of Leak Scenarios

Details of Consequence Analysis

- Below Ground Releases
 - –first, estimate time required to reach groundwater depth
 - then, if release
 duration results in
 contact, estimate
 portion in water

To make additional IPLs requires a significant "price". The layers must be independent of the initiating cause, a failure of one layer cannot cause another layer to fail, the layers must be independent, must be effective, must be capable of detecting the process anomoly, must act to bring the process to a safe state.

Decreasing Consequence Indices

6	5	4	3	2	0
7	6	5	4	3	2
8	7	6	5	4	3
9	8	7	6	5	4
10	9	8	7	6	5
10	10	9	8	7	6

			Components of basic standard					Options for some categories of tanks							
Risks addressed by various components of the standard		RPB or double bottom	Bottom coating	Dome roof	Steel annular pontoon floating roof	Floating suction	Diffuser	Deep sump	Tank safety valves	ATG plus IPL2 overfill protection	Filter outbound (clean tanks or proprietary line)	Precision leak test every 2 yrs (int. term tanks)	Update, review & audit modes and procedures for overfill protection	Monthly visual inspection+weekly vapor sniffing of aluminum floating roof	Full standard
Undetected leaks	Α	\times										$\geq <$			
Requirement for dike field liner	В	\bowtie								\times					
Bottom corrosion; decreased			\sim												
tank life	С		\wedge												
Static charge during filling	D						\times		\geq						
Water in product	E		\geq	X		\geq	×	\times							
Particulate in product	F		\geq	\geq		\times	\geq	\geq			\geq				
Tanks out of service for product						Х	\mathbb{N}								
Explosion/fire in vanor space	1 T			\sim	\sim		$ \rightarrow $		\sim	\sim				<u> </u>	
Roof drain failure				\mathbf{i}		-			\sim	\vdash					
Creation of confined space	- U			\bigcirc											
(new risk)	ĸ			IX.											
Vapor emissions	L			$\mathbf{\mathbf{x}}$	\geq										
Overfill	N					1				\times			$\geq <$		
Undesired draining of tank	0								\times						
Increase inspection and															\bigtriangledown
maintenance cycle to 20 years	Р														\bigtriangleup
Landing of Roof	R									\times					
Tank contamination/product															

The Decision Problem

- Which control technique should be selected for this AST:
 - Prevention?
 - Detection?
 - Protection?

Note: Remediation is not an acceptable control measure

The Big Picture = Management Systems

- Local, State, and Federal Regulations and Rules
- Corporate Management Systems
- Industry and API standards
- Experts and Consultants
- State of the Art Ideas: risk assessment, fitness for service, risk based inspection, etc

Contents

- 2 Operational Excellence Management System
- 4 Leadership Accountability
- 6 Management System Process
- 8 OE Expectations
- 14 Navigating the OEMS
- 16 OE Governance
- 17 OEMS Implementation and Compliance Assurance
- Back Cover Tenets of Operation

Chairman's Message

John Watson Chairman and CEO of Chevron Corporation Our Chevron Way values place the highest priority on the health and safety of our workforce and protection of our assets and the environment. The Operational Excellence Management System (OEMS) translates this priority into world-class performance, providing Chevron with a competitive advantage and driving business results.

The OEMS is a comprehensive, proven means for systematic management of process safety, personal safety & health, the environment, reliability and efficiency. Through disciplined application of the OEMS, we integrate OE processes, standards, procedures and behaviors into our daily operations.

The OEMS helps us identify and manage the risks we encounter in our global business operations. The system is effective because it requires leader-driven assessment of strengths and gaps, completion of risk-reducing actions, regular review of progress and continual improvement.

While leaders are responsible for managing the OEMS and enabling OE performance, every individual in Chevron's workforce is accountable for complying with the principles of "Do it safely or not at all" and "There is always time to do it right." Success depends on operational discipline from each of us in applying the Tenets of Operation to our daily decisions. We must recognize hazards, follow required practices and procedures and appropriately manage workplace changes. If necessary, every member of our workforce is authorized to exercise Stop-Work Authority.

I encourage you to study this manual. Keep it nearby. Refer to it often. It will guide us to perform every task, the right way, every time.

I am committed to meeting our OE Objectives. I ask you to join me. Together, we'll work safely, protect the environment, and operate reliably and efficiently as we provide energy the world requires for economic growth and human progress.

John

Operational Excellence Management System (OEMS)

The Operational Excellence Management System consists of three parts:

Leadership Accountability Management System Process OE Expectations

Tenets of Operation

To achieve and sustain our objectives, we must develop a culture where everyone believes all incidents and operating disruptions are preventable and that "zero incidents" is possible.

Tenets are a code of conduct used by the workforce as a tool to guide daily decisions. Leaders play an important role in setting expectations and reinforcing behaviors consistent with the tenets. The Tenets of Operation are based on two key principles:

1. Do it safely or not at all.

2. There is always time to do it right.

Each organization will deploy the Tenets of Operation to provide a foundation for establishing a culture of operational excellence at Chevron.

Always:

- 1. Operate within design and environmental limits.
- 2. Operate in a safe and controlled condition.
- 3. Ensure safety devices are in place and functioning.
- Follow safe work practices and procedures.
- Meet or exceed customer's requirements.
- Maintain integrity of dedicated systems.
- 7. Comply with all applicable rules and regulations.
- 8. Address abnormal conditions.
- Follow written procedures for high-risk or unusual situations.
- Involve the right people in decisions that affect procedures and equipment.

Chevron Corporation 6001 Bollinger Canyon Road San Ramon, CA 94583 www.chevron.com

@ 2010 Chevron U.S.A. Inc. All rights reserved.

Operations Integrity Management System

The OIMS Framework includes 11 Elements. Each Element contains an underlying principle and a set of Expectations. The OIMS Framework also includes the characteristics of, and processes for, evaluating and implementing OI Management Systems.

Application of the OIMS Framework is required across all of ExxonMobil, with particular emphasis on design, construction and operations. Management is responsible for ensuring that management systems satisfying the Framework are in place. The scope, priority and pace of management system implementation should be consistent with the risks associated with the business.

Features of a Management System

- MS is a business function of the overall organization.
- MS is a systematic and organized approach to solving safety and environmental problems.
- The purpose of a MS is to achieve and maintain the necessary level of safety and environmental in an organization.
- Implementation of a MS involves management organization, responsibility, and competence ('human issues').

SMS Key Elements

- Key Element 1: Safety and Environmental Advocacy
- Key Element 2: Safety and Environmental Information
- Key Element 3: Hazard and Risk Assessment and Analysis
- Key Element 4: Management of Change
- Key Element 5: Procedures and Safe Work Practices
- Key Element 6: Training
- Key Element 7: Equipment Integrity and Industry Standards
- Key Element 8: A Permit System
- Key Element 9: Pre start up safety review
- Key Element 10: Emergency response and control
- Key Element 11: Near Miss and Incident investigation
- Key Element 12: Auditing
- Key Element 13: Documents and Data Information Management Systems

More Information on Management Systems

- PEMY Consulting (<u>phil@pemyconsulting.com</u>)
- API RP 75 Development of a Safety and Environmental Management Program for Offshore Operations and Facilities
- API RP 75L Guidance document for the Development of a Safety and Environmental Management System for Onshore Oil and Natural Gas Production Operation and Associated Activities
- API 770 A Manager's Guide to Reducing Human Errors Improving Performance in the Process Industries
- API 754 Process Safety Performance Indicators for the Refining and Petrochemical industries
- UK Health Safety Executive Web Site

API Tools

- API 2610 petroleum terminals
- API 340-PUB 340 summarizes 99 causes of liquid releases at AST facilities and presents 176 measures to prevent or control them.
- API 653 tank inspection
- API 2611 piping inspection for terminals
- etcera

API 2610

CONTENTS

		Page
1	GENERAL. 1.1 Scope and Purpose. 1.2 Nonapplicability and Retroactivity 1.3 Governmental Requirements and Reviews	 1 2 2
2	REFERENCES 2.1 Standards 2.2 Other References	2 2 7
3	DEFINITIONS	7
4	SITE SELECTION AND SPACING REQUIREMENTS 4.1 Overview 4.2 Site Selection 4.3 Spacing Requirements	8 8 9
5	POLLUTION PREVENTION AND WASTE MANAGEMENT.5.1Applicability.5.2Waste Management Hierarchy.5.3Pollution Prevention.5.4Waste Management Practices	. 10 . 10 . 10 . 11 . 11

RP 12R1	Setting, Maintenance, Inspection, Opera- tion, and Repair of Tanks in Production	RP 1110	Pressure Testing of Liquid Petroleum Pipelines
	Service	RP 1124	Ship, Barge, and Terminal Hydrocarbon
Publ 306	An Engineering Assessment of Volumetric		Vapor Collection Manifolds
	Methods of Leak Detection in Above-	RP 1125	Overfill Control Systems for Tank Barges
	ground Storage Tanks	Std 1529	Aviation Fueling Hose
Publ 307	An Engineering Assessment of Acoustic	API 1581	Specifications and Qualification Proce-
	Methods of Leak Detection in Above-		dures for Aviation Jet Fuel Filter/
	ground Storage Tanks		Separators
Publ 315	Assessment of Tankfield Dike Lining Mate- rials and Methods	RP 1604	Closure of Underground Petroleum Stor-
Puhl 334	A Guide to Leak Detection for Above-	DD 1616	age lanks
1001221	ground Storage Tanks	RP 1015	Installation of Onderground Petroleum Storage Systems
Publ 340	Liquid Release Prevention and Detection	RP 1621	Bulk Liquid Stock Control at Retail Outlets
	Measures for Aboveground Storage	RP 1626	Storing and Handling Ethanol and Gaso-
	Facilities		line-Ethanol Blends at Distribution
Publ 341	A Survey of Diked-area Liner Use at		Terminals and Service Stations
	Aboveground Storage Tank Facilities	RP 1627	Storage and Handling of Gasoline-Metha-
Publ 351	Overview of Soil Permeability Test		nol/Cosolvent Blends at Distribution
DD 600	Methods		Terminals and Service Stations
KP 300	Recommended Practice for Classification	Publ 1628	A Guide to the Assessment and Remedia-
	of Locations for Electrical Installations at		tion of Underground Petroleum Releases
	Petroleum Facilites Classifiea as Class 1, Division Land Division 2	Publ 1629	Guide for Assessing and Remediating
DD 520	Danian of Durana m. Palianing Statema		Petroleum Hydrocarbons in Soil
RF 520 RD 540	Electrical Installations in Datablaum Dro	RP 1631	Interior Lining and Periodic Inspection of
KF 540	consistent and anter an anter		Underground Storage Tanks
A DI 570	Cessing Fians Diring Inspection Code: Inspection	RP 1632	Cathodic Protection of Underground
AFI)/0	Render Alteration and Rending of In-ser-		Petroleum Storage Tanks and Piping
	vica Piring Systems		Systems
RP 575	Inspection of Atmospheric & Low Pressure	RP 1637	Using the API Color-Symbol System to
	Storage Tanks		Mark Equipment and Vehicles for Product
Std 607	Fire Test for Soft-seated Ouarter Turn		Identification at Service Stations and Dis-
	Valves		tribution Terminals
		Puhl 1638	Wasta Managament Practices for Petro-

б	SAFE	COPERATIONS OF TERMINALS & TANKS	14
	б.1	General	14
	6.2	Hazard Identification	14
	6.3	Operating Procedures	14
	6.4	Safe Work Practices	14
	6.5	Emergency Response and Control Procedures	14
	6.6	Management of Change	15
	6.7	Training	15
	б.8	Pre-Startup Safety and Operational Inspection	15
	6.9	Incident Investigation.	15
	6.10	Contractor Safety	16
7	FIRE	PREVENTION AND PROTECTION	16
	7.1	General	16
	7.2	Fire Prevention	16
	7.3	Fire Fighting Equipment	17
	7.4	Fire Extinguishment and Control	17
	7.5	Fire Protection Water Supplies	18
	7.6	Fire Emergency Plan	18
	7.7	Exposure Protection	19
	7.8	Special Product Considerations	19

8	TAN	KS	20
	8.1	Aboveground Petroleum Storage Tanks	20
	8.2	Operations, Inspections, Maintenance, and Repair for Aboveground Tanks	23
	8.3	Fiberglass Aboveground Storage Tanks	24
	8.4	Underground Tanks and Piping	24

8.1.3.2 Leak Detection

Many different types of leak detection systems currently exist. Some systems are designed to take continuous readings, and other systems use periodic readings (including visual monitoring) to determine tank integrity. Current API references on leak detection include API Publ 306, API Publ 307, API Publ 334, API RP 575, and API Std 650. Additionally, there are a number of different technologies being used, as well as new technologies being developed, for use in aboveground storage tanks to check integrity. Examples of systems include acoustic emissions, tracer methods, volumetric (including mass deviation) monitoring, and vapor sensing. Each system requires trained and skilled personnel to interpret the results. The most common means of AST leak detection include, but are not limited to the following:

a Use of monitoring wells in the tank farm area.

b. Use of aleak detection system (see API Std 650, Appendix I).

c. Placement of smaller tanks on a steel reinforced concrete slab underlying the entire tank bottom (an RPB).

d Tightness testing

In addition, it a facility meets the UAA definition of a "Major Source," other emission requirements will apply (see EPA regulations) (see 5.3.1).

8.1.4 Tank Calibration

Refer to API MPMS Ch. 2 for calibration of new or recalibration of existing tanks.

8.1.5 Coating and Protection from Corrosion

See Section 10 for information coatings and corrosion protection.

8.1.6 Tank Appurtenances

8.1.6.1 Vents

Normal tank venting should be provided in conformance with NFPA 30, API Std 650 and API Std 2000. Emergency venting shall be provided for all tanks. Emergency venting may include a weak or frangible roof to shell connection (typically, tanks greater than 50 ft [15.24 m] in diameter). Additional emergency venting may be required by local code or
	8.5	Underground Storage Tank Vapor Emissions	24
9	DIKI 9.1 9.2 9.3	ES AND BERMS Overview Dikes Berms	24 24 24 26
10	PIPE 10.1 10.2 10.3 10.4 10.5 10.6 10.7	, VALVES, PUMPS & PIPING SYSTEMS General Material Compatibility. Piping Systems. Piping Components Pumps. Pipeline Integrity Assurance of Existing Piping Systems Testing Following Construction	26 26 26 27 29 29 30

11	LOADING, UNLOADING AND PRODUCT TRANSFER FACILITIES	30
	11.1 Scope	30
	11.2 General Design	30
	11.3 Truck Loading/Unloading	31
	11.4 Rail Tank Car Loading and Unloading	33
	11.5 Marine Loading/Unloading	34
	11.6 Aviation Loading/Unloading	35
	11.7 Vapor Control	35
	11.8 Oxygenate Blending	37
	11.9 Emergency Shutdown Systems and Procedures	37
	11.10 Product Testing	37
	11.11 Communication	37
	11.12 Measurements	37
	11.13 Valves, Lines, Loading Arms, and Hose Product Identification.	38
	11.14 Release Prevention System in Loading/Unloading Areas	38
	11.15 Maintenance/Testing	38
	11.16 Auxiliary Systems	38

12	CORROSION CONTROL	. 38
	12.1 Scope	. 38
	12.2 Protective Coatings	. 38
	12.3 Internal Tank Lining.	. 41
	12.4 Cathodic Protection	. 42
12		42
10	12.1 Charles of Liffes, AND TARD	. 43
		. 43
		. 44
	13.3 Yard	. 49
14	REMOVALS AND DECOMMISSIONING OF FACILITY	. 51
	14.1 General	. 51
	14.2 Site Control and Protection	. 53
	14.3 Preparations	. 53
	14.4 Execution	. 53
	14.5 Site Assessment and Remediation.	. 53
	14.6 Closeout and Cleanup	. 53

Types of Storage Tank Floating Roofs

Types of Storage Tank Fixed Roofs

Sources of Potential Releases at AST Facilities

- Aboveground storage tanks
- Piping systems
- Loading areas
- Ancillary equipment
- Operating systems
- overfills

Sources of Potential Releases at AST Facilities

Protection Control Measures

Example Focus Area - Secondary Containment

- The ultimate insurance policy
- Historical
- Regulatory
- Most are never used
- Lack of standardization
- Proof testing
- Leaks

Marsh Risk Engienering Position Paper 01

LOCATION	DATE	FUEL RELEASED	CONSEQUENCE
Jacksonville, Florida, USA	1993	Unleaded petrol/ gasoline	190 m ³ released. The spill ignited, leading to a major explosion and fire.
Coryton, UK	1997	Unleaded petrol/ gasoline	81 m ³ released. Spill contained within bund – no ignition.
Belgium	2001	Hexene	Approximately 90m ³ released. Spill contained within bund – no ignition.
Sour Lake, Texas, USA	2003	Crude oil	80 m ³ released. Spill contained within bund – no ignition.
Torrance, California, USA	2004	Jet fuel	Approximately 10m ³ released. Spill contained within bund – no fire or explosion.
Bayonne, New Jersey, USA	2004	Fuel oil	825 m ³ released. Oil contained on tank farm. – no fire or explosion.
Casper, Wyoming, USA	2004	Unleaded petrol/ gasoline	Up to 1270 m ³ released. Spill contained within bund – no ignition.
Rensselaer, NY, USA	2005	Unleaded petrol/ gasoline	0.4-4 m ³ released. Spill contained within bund – no ignition.

LOCATION	DATE	FUEL RELEASED	CAUSE	CONSEQUENCE
Fawley, UK	1999	Crude oil (400 tonnes)	Corrosion of tank base	No injuries or off-site effects. All of the oil was recovered from primary containment.
Milford Haven, UK	2005	Kerosene (653 tonnes)	Leak from damaged sump escaped through permeable floor of bund	No injuries, but nearby gardens, farmland, and stream contaminated. All wildlife killed in stream.
Antwerp, Belgium	2005	Crude oil (26,000 tonnes)	Catastrophic failure of storage tank as a result of corrosion	Overtopping of the bund wall occurred due to sudden release.
Plymouth Harbour, UK	2005	Kerosene (tonnage uncertain)	Corrosion of the tank base and a permeable bund base	No injuries. Kerosene entered into the ground.
Coryton, UK	2006	Gas oil (121 tonnes)	Tank overfilled, oil escaped from bund by defective drain valve	No injuries or harm to the environment.
Poole Harbour, UK	2006	Diesel oil (19 tonnes)	Diesel escaped through damaged base plate and through cracks in concrete bund floor	No injuries. Pollution of ground but not of the harbour.

Buncefield fuel depot

Before Dec 11 2005

Buncefield fuel depot

Dec 11 2005 (a Sunday)

Many tanks connected by manifold.

Historical legacy - Newport

Copyright @ State Government of Victoria. Service provided by www.land.vic.gov.au.

Numerous Unstandardized Methods of Design and Construction

- A dirt pond
- A flat earthen area with a concrete dike surrounding it
- Fully concreted basis or resevoir
- A tank within a tank
- A large pan

Secondary Containment

- No proof testing normally done; cannot be easily tested so we don't know if it will really work
- But its not rocket science so qualified principles using qualified designs can reduce the risk
- Some principles:
 - Hydraulic pressure and tightness
 - Radian heat loads on joints and penetrations
 - Nature of underlying soil
 - Speed with which contents could permeate soil
 - Pros and cons of liners (lines can make things worse or distort the overall risk picture)
 - Bouyancy effects for either spills or major storms/floods
- API 653 does not address secondary containment inspection

Lessons from Buncefield

 Any concrete structure for retention of liquids should be designed to minimise the risk of cracks forming. If cracks do form they should be adequately repaired.

Leak Through Rebar Holes

Good Practices for Penetrations

Good Practices for Joints

Good Practices for New Joints

Notes: 1: Fire referring rope to be placed on both sides of an internal bund wall

2: Weleratop, rope and fire resistant assist to be omitted in bundwalls footings.

It Stainless steel for waterbar to be grade 315 and 1.0 mm thick

Lining Secondary Containment

- Not normally used but regulatory pressure being applied
- Pros and Cons Not Clear⇒controversial topic
- API 341 covers this in detail

A Survey of Diked-Area Liner Use at Aboveground Storage Tank Facilities

Health and Environmental Affairs Department

API PUBLICATION NUMBER 341

API 341 Results

- Vehicular traffic and daily operations cause damage
- Material failures from uv radiation where exposed, chemical reactions with soil, freeze cycles, loss of plasticizers, embrittlement with time
- Failures at penetrations and around structures
- Subgrade failures due to settlement, liner movement stress failures
- API conclusion is that liner effectiveness is limited.
- From a risk mitigation perspective, in most but not all cases, the resources used for liners would be far better allocated to things like API inspections, better design and construction, management systems, overfill protection, etc (PEMY opinion)

Option 2 Geosynthetic Clay Liner

Some Other Ways To Use Secondary Containment

- Severe settlement (+)
- Overfills (-)
- Seismic (-)
- Corrosion (+)
- Operational (-)
- Vandalism or Terrorism (-)
- And more (?)

Purpose of Foundations

- Support tank (obviously)
- Minimize corrosion
- Allow internal (and external drainage)
- Prevent many different modes of settlement (differential, out of plane, edge, etc)
- Allowance for future settlement
- Provide anchorage for pressure tanks or for seismic

Common Foundation Types

- Earthen
- Slab
- Crushed Stone Ringwall
- Concrete Ringwall
- Piled
- Others

Tank Size

- Large Tanks (50 feet in diameter or greater) use concrete ringwall (preferred)
- Small Tanks (20 feet in diameter or less) use concrete slab foundation (preferred).
- Medium Tanks (20 to 50 feet in diameter) can be classified as either large or small at the discretion of the foundation designer and tank design engineer, for the purpose of choosing the type of foundations only.

Caveat

- Do not just put a tank on a foundation (this is done all too often)
- Get a geotechnical engineering firm to assess and determine the soil and subsurface conditions
- Get a recommendation from them on the foundation type (but you will have to provide the criteria for acceptance)
- Make sure you consider RPBs

Soil Type

 In some instances, large fixed roof tanks can be supported directly on properly prepared good native material. Choose this method only if recommended by the soils consultant. Pile supported concrete slab foundations are used for tanks on poor soils, regardless of the tank size

Leak Detection Groove Patterns

Settlement Data Real Tank

Best Fit Cosine Curve

mse1 = 8.5875e-05

mse2 = 4.1506e-05

Best Fit Cosine Curve

Second Mode Fit

Better "view"

Better View Both Modes Shown

Residuals

Tanques de Gasolinas (41, 40, 32)

Tanque de almacenamiento (Diesel-22)

BULLETS LPG (FUERA DE SERVICIO)(MOTHBALLED LPG BULLETS SANK AT ONE SIDE)

Thank You

For more information contact Phil Myers phil@pemyconsulting.com